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Abstract. This paper presents a wireframe algorithm that helps visualize embedded
Riemannian surfaces in R3. Using information provided by the induced metric, also
known as the first fundamental form defined in the Euclidean space, the algorithm aims
to find an isometric embedding of the intrinsic surface in the three-dimensional space. The
fundamental idea is to use a variation of Simulated Annealing (SA) to yield an embedding
whose geometric measurements correspond to those of the intrinsic surface.

1. Introduction

Isometric embedding is one of the most famous problems in differential geometry and
is still being investigated by many. This classical problem is concerned with taking a two-
dimensional Riemannian manifold characterized by its intrinsic metrics and realizing as an
embedding into the three-dimensional Euclidean space.

Beyond the analysis of isometric embedding conducted by famous mathematicians such
as John Nash and Louis Nirenberg, this problem has seen numerous applications in applied
mathematics, computer science and engineering. Reconstructing surfaces in the three-
dimensional space from geometric information defined in the two-dimensional space is a
very powerful tool. For example, isometric embedding has been researched for building
face recognition technology; given a two-dimensional picture, the theory implies that it
is possible to reconstruct a facial surface that preserves the geodesic distances between
vertices.

The reason for the problem’s wide recognition is perhaps its applications as well as
its complexity. In order to develop a thorough computational method for constructing
an isometric embedding, many factors such as existence and uniqueness must be carefully
studied. Furthermore, the advantages and disadvantages of many different approaches must
be evaluated. Ingrid Hotz in [1] explains that local methods that are being tested have the
risk of cluttering. Meanwhile, global methods such as the Newton-Raphson method seen
in Nollert and Herold’s paper [6] require good start values to iterate over. Without good
start values, the convergence of the algorithm to correct positions of the discretized points
of the given surface may fail.

With no known ideal and clean-cut algorithm in computational geometry for solving the
isometric embedding problem, we are motivated to experiment with various methods in
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hopes of obtaining and refining a general solution. This paper introduces a new idea of
using a probabilistic algorithm inspired by Markov Chain Monte Carlo in order to arrive
at the correct embedding in the three-dimensional space. When the isometric embedding
problem is viewed as a global optimization problem of preserving the length of curves, the
appropriateness of using a probabilistic model becomes quite clear. Probabilistic algorithms
in optimization problems are known to be more robust than general iterative algorithms
in that they have ”stronger mechanisms for escaping local minima” in a large search space
[7]. This indicates that in the context of our problem, the use of a probabilistic algorithms
may yield a good approximation to the global optimum, which is essentially the embedding
that preserves the metric.

2. The Problem

Mathematically, the isometric embedding problem can be summarized by the follow-
ing. Let a surface parameterization X : U ⊂ R2 → S ⊂ R3 be defined by X(u, v) =
(x(u, v), y(u, v), z(u, v)). Then the properties of surface S can be expressed in terms of the
metric tensor g, also known as the matrix containing the coefficients of the first fundamental
form:

g =

[
E F
F G

]
=

[
Xu ·Xu Xu ·Xv

Xu ·Xv Xv ·Xv

]

The first fundamental form represents the inner product of basis vectors of the tangent
space of a surface. The basis vectors of the tangent space denoted as Xu and Xv as
shown in Figure 1 allow for calculating the intrinsic geometric properties of the surface,
such as lengths of curves on the surface, surface areas, and Gaussian curvature. These
measurements pertain to just the intrinsic, not the extrinsic geometry of the surface and
are invariant under isometries.

Given a surface parameterization, X(u, v), the metric can be computed easily by taking
the dot product of its partial derivatives. However, going the other way, i.e. computing
the surface parameterization given the metric is not a trivial matter. The problem can be
written down using differential equations

E = x2
u + y2

u + z2
u

F = xuxv + yuyv + zuzv
G = x2

v + y2
v + z2

v

The solutions of the above differential equations determine the parameterization X(u, v)
= (x(u, v), y(u, v), z(u, v)). Though the existence of a global embedding is not guaranteed,
the Gauss-Bonnet theorem [3] states that any Riemannian manifold has a local embedding
in the neighborhood of a given point. For the purpose of the paper, we do not want to solve
the differential equation to obtain the parameterization. Rather, computing a solution of
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the each of the discretized points of the surface in the 3-dimensional Euclidean space via
a MCMC inspired algorithm will help us visualize the intuitive meaning of the metric.

Figure 1. Embedded surface in R3 with basis vectors of tangent space.
(Image courtesy of [1])

3. Embedding Algorithm

The overall idea is to discretize a random grid inR3 using a triangular mesh, and compute
the candidate position of the points by minimizing the energy function. We measure the
difference between the measurements of the candidate and the current position, and only
accept the candidate as the updated position if it ”passes” the condition defined a priori.
We repeat this process until the geometric measurements of the surface match the intrinsic
measurements computed by the metric tensor. The outline of the algorithm is the following:

− Create a triangular grid in sitting in R2, the intrinsic grid whose lengths and surface
area can be computed using the information provided by the metric tensor.

− Create a random triangular grid sitting in R3 to simulate the embedding.

− Randomly pick a point on the intrinsic grid and index the six neighboring points.

− Use the metric to calculate the intrinsic quantities such as the lengths between
the random point and each of the six neighboring points, the lengths between the
neighboring points, and surface areas of six triangles formed by the random point and
the neighboring points.

− Compute the corresponding lengths and areas on the embedding.
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− Define energy function H as the sum of the differences of the intrinsic measure-
ments and the measurements on the embedding squared.

− Minimize the energy function. The values of the neighboring points on the em-
bedded surface that minimize H are candidates for update.

− Accept the candidate points as new neighboring points on the embedding with
a predetermined probability. Iterate the process until H converges.

Figure 2. We pick a random point on the grid, index the 6 neighboring
points to compute their geometric quantities.

3.1. Calculation of Intrinsic Length and Surface Area. The intrinsic length and
surface area are well-known and easily computable given the metric. The length of a curve
on a surface is

(1) l =

∫ h

0

√√√√E

(
du

dt

)2

+ 2F

(
du

dt

)(
dv

dt

)
+G

(
du

dt

)2

dt

where h is the time step, and E, F and G are coefficients of the first fundamental form.
Using the above equation, we compute the length between the randomly chosen point and
its neighbors on the intrinsic surface.

Similarly, the area of a triangle on a surface is well-defined and can be computed by
simply using the coefficients of the first fundamental form. The formula is given by:

(2) α =

∫∫
∆

√
EG− F 2dudv
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Using the two formulas above, we are able to find the intrinsic lengths between the randomly
chosen point and each of the six neighbors, the intrinsic lengths between the neighbors, as
well as the surface area of six triangles created by the random point and its neighbors.

3.2. Calculation of Length and Surface Area on the Embedding. In order to com-
pute the geometry of the embedding, we use the Euclidean distance formula for length
between two points and Heron’s formula for the area of a triangle. They are respectively
defined by:

(3) d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2

where (q1, q2, q3) and (p1, p2, p3) are two points on the embedding in R3, and

(4) A =
1

4

√
(a2 + b2 + c2)2 − 2(a4 + b4 + c4)

where a, b, c are the edges of a triangle formed by three points on the mesh of embedding.
Analogous to computing the intrinsic quantities, using the above formulas, we are able to
find the distance between the randomly chosen point and its six neighbors, the distance
between each of the neighbors, and the area of the six triangles formed by these relevant
points.

3.3. Definition of Energy Function. The definition of energy function is crucial in mak-
ing the algorithm converge to the correct embedding. For our purpose, the energy of the
system, i.e. the embedding, is expressed by the sum of the difference between the intrinsic
and extrinsic measurements squared. Intuitively, this makes sense because we want the
embedding to match the geometric quantities of the intrinsic surface as the energy of the
system nears 0. That is, the optimization of the energy function should reflect the embed-
ding evolving to become more and more like the intrinsic surface.

Combining the information obtained from section 2.1 and 2.2, define the energy function
H as

(5) H =

6∑
i=0

((Li − li)2 + (Pi − ρi)2 + (Ai − αi)2)2

where,

Li = Euclidean distance between a random point and its neighbor
li = Intrinsic length between a random point and its neighbor
Pi = Euclidean distance between two neighbors
ρi = Intrinsic length between two neighbors
Ai = Area of each of the six triangles surrounding the random point
αi = Intrinsic surface area of each of the triangles surrounding the random point



6 SUN HYOUNG SONYA KIM ADVISOR: DR. TOM LAGATTA

3.4. Minimization of the Energy Function. Using the definition of the energy func-
tion, the next step is to compute the change in energy at each iteration. In order to do
so, plug in the known values of lengths and area directly into equation (5) to calculate the
energy at the current step; call this value Hcurrent. Then leaving Li, Pi, and Ai as vari-
ables in equation (5), minimize the function H. The values which minimize H tell us the
candidate points of the six neighboring points that are to be updated. Call the minimized
value of H Hnew. Then the change in energy from the current step to the ideal next step
can now be defined by

(6) ∆H = Hcurrent −Hnew

3.5. Simulated Annealing. Simulated Annealing (SA) is a variation of the Markov Chain
Monte Carlo method which strives to find the global optimum of a function in a large search
space. The algorithm provides iterative improvements of the solution by considering a ran-
dom solution. The random solution may be then accepted as the new solution with a
certain probability defined a priori.

In the context of the problem, the SA algorithm will strive to find the positions of each
of the grid points that minimize the total energy of the embedding. At each iteration, it
will pick a random point on the grid, compute the necessary measurements to yield the
random solution and the change in energy, ∆H. Then, with probability

e−β∆H

eβ∆H + e−β∆H

where,

β = 1/“Temperature”
∆H = Hcurrent - Hnew

we accept the random solution as the new solution of the system. If the random solution
fails to pass the test, then the solution is ignored and a new random solution is calculated
for testing. The new solution represents the updated points of the 6 points neighboring
the randomly selected point. As the algorithm iterates and the energy of the system cools
down, the idea is that the embedding will converge to the desired surface whose discrete
measurements match those of the intrinsic surface.

4. Results

For simple testing, let

g =

[
E F
F G

]
=

[
1 0
0 1

]
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This is the Euclidean metric. Since the Euclidean metric corresponds to planes, the ex-
pected result of the embedding is a plane. The evolution of the embedding, which starts
out as a slightly perturbed surface is shown in Figure 3 and Figure 4.

Figure 3. Left shows the embedding at the first iteration and the right
shows the embedding at the 50th iteration

Figure 4. Left shows the embedding at the 500th iteration and the right
shows the embedding at the 1000th iteration
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A qualitative glance at the images of the embedding at various iterations unfortunately
does not confirm the effectiveness of the algorithm. Namely, the embedding does not con-
verge to a plane as desired, and seems to wander in a random manner. In fact, the height
of the images change from 0.2 at the first iteration to 2 at the 1000th iteration, which
indicate that the embedding is slowly growing and is not being contained. However, as
desired, the change in energy seems to be converging to a smaller value as the SA algorithm
is iterated. For this particular example, ∆H corresponding to the first, 50th, 500th and
1000th iterations were respectively -1.4134, -1.04868, -0.926808 and -0.125748.

5. Conclusion

Simple testing using the Euclidean metric resulted in the algorithm not converging to a
desired embedding, namely a plane. However, observing the behavior of the embedding’s
updates at each iteration, we can predict how the algorithm can be improved in order to
reach convergence.

While the random walk on the large search space of all possible surfaces creates fluctua-
tions of the points on the embedding, the optimization problem is insufficiently defined to
yield convergence. The random updates of the points on the embedding in Figures 3 and
4 proved this. Currently, the energy function H only includes to minimize the difference
between the intrinsic and extrinsic lengths and the intrinsic and extrinsic areas. These con-
straints were clearly not enough to force the algorithm to find an optimal solution for the
embedding. This implies that the algorithm must include further optimization constraints.
For example, amending the energy function to include other geometric measurements such
as curvature would narrow down the search space. However, the reader should be advised
that approximating discrete curvature on a mesh is not a trivial task and would require a
good amount of consideration.
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Mathematica Code

Needs@"VectorAnalysis`"D

H* First Testing with Euclidean metric *L

ee@u_, v_D := 1;

ff@u_, v_D := 0;

gg@u_, v_D := 1;

gij@ee_, ff_, gg_D@u_, v_D := 88ee@u, vD, ff@u, vD<, 8ff@u, vD, gg@u, vD<<;

metricDet@ee_, ff_, gg_D@u_, v_D := Hee@u, vD * gg@u, vDL - Hff@u, vDL2;

m = 10;

h = 1;

H* Create triangular lattice *L

e1 = 81, 0, 0<;

e2 = 8Cos@60 DegreeD, Sin@60 DegreeD, 0<;

flatGrid = Table@i * h * e1 + j * h * e2, 8i, 0, m<, 8j, 0, m<D;

H*Adding noise to the grid*L

gridNoise = 0.1 * h * RandomVariate@NormalDistribution@D, 8m + 1, m + 1, 3<D;

grid = flatGrid + gridNoise;

H*grid �� MatrixForm*L

H* Plotting the lattice *L

gridFlat = Partition@Flatten@gridD, 3D;

ListPlot3D@gridFlat, Mesh ® AllD

H* Define a coordinate�intrinsic map using first fundamental form *L

ubasis = 81, 0<;

vbasis = 8Cos@60 DegreeD, Sin@60 DegreeD<;

intrinsicGrid = Table@i * h * ubasis + j * h * vbasis, 8i, 0, m<, 8j, 0, m<D;

H* latticepoints = Ξ *L

intrinsicFlat = Partition@Flatten@intrinsicGridD, 2D;

H*intrinsicGrid��MatrixForm*L

H*ListPlot@intrinsicFlatD*L

iterations = 0;

maxiteration = 1000;

While@ iterations < maxiteration,

H* Ranomly pick a point x on the intrinsic grid *L

xI = RandomInteger @82, m<D;

xJ = RandomInteger @82, m<D;

x = intrinsicGrid @@xI, xJDD;
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H* Assign the neighboring points to x *L
x1 = intrinsicGrid@@xI + 1, xJDD;
x2 = intrinsicGrid @@xI, xJ + 1DD;
x3 = intrinsicGrid @@ xI - 1, xJ + 1DD;
x4 = intrinsicGrid @@xI - 1, xJDD;
x5 = intrinsicGrid@@xI, xJ - 1DD;
x6 = intrinsicGrid @@xI + 1, xJ - 1DD;

NeighborMatrix = 8x1, x2, x3, x4, x5, x6<;
NeighborMatrix �� MatrixForm;

Dimensions@NeighborMatrixD;

H* Calculate intrinsic quantities: length HΛL from x to xi,

side length HΣL from xi to xj, area HΑL of 6 triangles *L
Λ = Table@Integrate@Sqrt@HNeighborMatrix@@iDD - xL.

gij@ee, ff, ggD@Hx + t * HNeighborMatrix@@iDD - xLL@@1DD ,
Hx + t * HNeighborMatrix@@iDD - xLL@@2DDD.
HNeighborMatrix@@iDD - xLD, 8t, 0, h<D, 8i, 1, 6<D;

ΣPartial = Table@
Integrate@Sqrt@HNeighborMatrix@@i + 1DD - NeighborMatrix@@iDDL.gij@ee, ff, ggD@

HNeighborMatrix@@iDD + t * HNeighborMatrix@@i + 1DD - NeighborMatrix@@iDDLL@@
1DD , HNeighborMatrix@@iDD +

t * HNeighborMatrix@@i + 1DD - NeighborMatrix@@iDDLL@@2DDD.
HNeighborMatrix@@i + 1DD - NeighborMatrix@@iDDLD, 8t, 0, h<D, 8i, 1, 5<D;

ΣLast = Integrate@Sqrt@HNeighborMatrix@@1DD - NeighborMatrix@@6DDL.gij@ee, ff, ggD@
HNeighborMatrix@@6DD + t * HNeighborMatrix@@1DD - NeighborMatrix@@6DDLL@@1DD ,
HNeighborMatrix@@6DD + t * HNeighborMatrix@@1DD - NeighborMatrix@@6DDLL@@2DDD.
HNeighborMatrix@@1DD - NeighborMatrix@@6DDLD, 8t, 0, h<D;

Σ = Append@ΣPartial, ΣLastD;

ΑPartial = TableB
Sqrt@3D

2
* SqrtBmetricDet@ee, ff, ggDB

1

3
* Hx + NeighborMatrix@@iDD + NeighborMatrix@@i + 1DDL @@1DD,

1

3
* Hx + NeighborMatrix@@iDD + NeighborMatrix@@i + 1DDL @@2DDFF, 8i, 1, 5<F;

ΑLast =
Sqrt@3D

2
* SqrtBmetricDet@ee, ff, ggDB

1

3
* Hx + NeighborMatrix@@6DD + NeighborMatrix@@1DDL @@1DD,

1

3
* Hx + NeighborMatrix@@6DD + NeighborMatrix@@1DDL @@2DDFF;

Α = Append@ΑPartial, ΑLastD;
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H* Corresponding random points on the grid *L

r = grid@@xI, xJDD;
r1 = grid@@xI + 1, xJDD;
r2 = grid @@xI, xJ + 1DD;
r3 = grid @@ xI - 1, xJ + 1DD;
r4 = grid @@xI - 1, xJDD;
r5 = grid@@xI, xJ - 1DD;
r6 = grid @@xI + 1, xJ - 1DD;
NeighborMatrixGrid = 8r1, r2, r3, r4, r5, r6<;

H* Calculate extrinsic quantities: length HΛrLfrom x to xi,

side length HΣrL from xi to xj, area HΑr Lof 6 triangles *L

Λr = Table@EuclideanDistance@r, NeighborMatrixGrid @@jDDD, 8j, 1, 6<D;

ΣrPartial = Table@EuclideanDistance@
NeighborMatrixGrid@@jDD, NeighborMatrixGrid@@j + 1DDD, 8j, 1, 5<D;

ΣrLast = EuclideanDistance@NeighborMatrixGrid@@6DD, NeighborMatrixGrid@@1DDD;
Σr = Append@ΣrPartial, ΣrLast D;

H* Use Heron's Formula to compute the area *L

ΑrPartial = TableB
1

4
* SqrtBIΛr @@jDD2 + Σr@@jDD2 + Λr @@j + 1DD2M2 -

2 * IΛr @@jDD4 + Σr@@jDD4 + Λr @@j + 1DD4MF, 8j, 1, 5<F;

ΑrLast =
1

4
* SqrtBIΛr @@6DD2 + Σr@@6DD2 + Λr @@1DD2M2 -

2 * IΛr @@6DD4 + Σr@@6DD4 + Λr @@1DD4MF;
Αr = Append@ΑrPartial, ΑrLastD;

H* Utility�Energy Function to minimize *L
HCurrent = SumBE^IHΛr@@iDD - Λ@@iDDL2M + E^IHΣr@@iDD - Σ@@iDDL2M +

E^JIΑr@@iDD2 - Α@@iDD2M2N H* + boundary term*L, 8i, 1, 6<F;

newNeighborMatrix = Array@a, 86, 3<D;

ΛrNew = Table@EuclideanDistance@r, newNeighborMatrix @@jDDD, 8j, 1, 6<D;

ΣrNewPartial = Table@EuclideanDistance@
newNeighborMatrix@@jDD, newNeighborMatrix@@j + 1DDD, 8j, 1, 5<D;

ΣrNewLast = EuclideanDistance@newNeighborMatrix@@6DD, newNeighborMatrix@@1DDD;
ΣrNew = Append@ΣrNewPartial, ΣrNewLast D;
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H* Finding the minimum of energy function *L

Energy = QuietBFindMinimumB
SumAE^IHEuclideanDistance@r, newNeighborMatrix@@iDDD - Λ@@iDDL2M, 8i, 1, 6<E +
SumAE^IHEuclideanDistance@newNeighborMatrix@@jDD,

newNeighborMatrix@@j + 1DDD - Σ@@jDDL2M, 8j, 1, 5<E +
E^IHEuclideanDistance@newNeighborMatrix@@6DD, newNeighborMatrix@@1DDD -

Σ@@6DDL2M + SumB

E^
1

4
* SqrtBIΛrNew @@jDD2 + ΣrNew@@jDD2 + ΛrNew@@j + 1DD2M2 - 2 * IΛrNew @@jDD4 +

ΣrNew@@jDD4 + ΛrNew @@j + 1DD4MF
2

- Α@@jDD2
2

, 8j, 1, 5<F +

E^
1

4
* SqrtBJIΛrNew @@6DD2 + ΣrNew@@6DD2 + ΛrNew@@1DD2M2 -

2 * IΛrNew@@6DD4 + ΣrNew@@6DD4 + ΛrNew@@1DD4MNF
2

- Α@@6DD2
2

,

8a@1, 1D, NeighborMatrixGrid@@1, 1DD<, 8a@1, 2D, NeighborMatrixGrid@@1, 2DD<,
8a@1, 3D, NeighborMatrixGrid@@1, 3DD<,
8a@2, 1D, NeighborMatrixGrid@@2, 1DD<,
8a@2, 2D, NeighborMatrixGrid@@2, 2DD<,
8a@2, 3D, NeighborMatrixGrid@@2, 3DD<,
8a@3, 1D, NeighborMatrixGrid@@3, 1DD<,
8a@3, 2D, NeighborMatrixGrid@@3, 2DD<,
8a@3, 3D, NeighborMatrixGrid@@3, 3DD<, 8a@4, 1D, NeighborMatrixGrid@@4, 1DD<,
8a@4, 2D, NeighborMatrixGrid@@4, 2DD<, 8a@4, 3D, NeighborMatrixGrid@@4, 3DD<,
8a@5, 1D, NeighborMatrixGrid@@5, 1DD<, 8a@5, 2D, NeighborMatrixGrid@@5, 2DD<,
8a@5, 3D, NeighborMatrixGrid@@5, 3DD<, 8a@6, 1D, NeighborMatrixGrid@@6, 1DD<,
8a@6, 2D, NeighborMatrixGrid@@6, 2DD<, 8a@6, 3D, NeighborMatrixGrid@@6, 3DD<FF;

H* Storing the result in a new Matrix called newSol *L
HMin = First@EnergyD;
newPointMatrix = Partition@Energy@@2DD, 3D;

newSol = Array@b, 86, 3<D;

For@i = 1, i £ 6, i++,

For@j = 1, j £ 3, j++,

newSol@@i, jDD = Last@newPointMatrix@@i, jDDDDD;

H* MCMC *L

Β = 100;

DH = HMin - HCurrent;

prob = E-Β*DH � IEΒ*DH + E-Β*DHM;
If@RandomReal@D < prob , x = 1, x = 0D;
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If @x � 1, 8grid@@xI + 1, xJDD = newSol@@1DD, grid@@xI, xJ + 1DD = newSol@@2DD,
grid @@xI - 1, xJ + 1DD = newSol@@3DD, grid @@xI - 1, xJDD = newSol@@4DD,
grid@@xI, xJ - 1DD = newSol@@5DD, grid @@xI + 1, xJ - 1DD = newSol@@6DD <D;

grid �� MatrixForm;

gridFlat2 = Partition@Flatten@gridD, 3D ;
gridFlatNoEnd = Delete@gridFlat2, 1D;
gridFlatNoEnd2 = DeleteAgridFlatNoEnd, Hm + 1L2 - 1E;

If@x � 1, Print@ListPlot3D@gridFlatNoEnd2, Mesh ® AllDD;
Print@8DH, Max@newSol - NeighborMatrixGridD<DD;

iterations++

E


